home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Turnbull China Bikeride
/
Turnbull China Bikeride - Disc 2.iso
/
STUTTGART
/
MATHS
/
PARI
/
PARI1
/
pari
/
testin
< prev
next >
Wrap
Text File
|
1991-12-09
|
9KB
|
414 lines
\e
\precision=40
pi
\precision=20
o(x^12)
5/3+o(127^5)
\\ A
abs(-0.01)
acos(0.5)
acosh(3)
acurve=initell([0, 0, 1, -1, 0])
apoint=[2, 2]
isoncurve(acurve, apoint)
addell(acurve, apoint, apoint)
adj([1, 2; 3, 4])
agm(1, 2)
agm(1 + o(7^5), 8 + o(7^5))
algdep(2 * cos(2 * pi / 13), 6)
anell(acurve, 100)
apell(acurve,10007)
apell2(acurve,10007)
apol=x^3+5*x+1
apprpadic(apol,1+O(7^8))
apprpadic(x^3+5*x+1,mod(x*(1+O(7^8)),x^2+x-1))
4 * arg(3+3*i)
3 * asin(sqrt(3)/2)
asinh(0.5)
assmat(x^5-12*x^3+0.0005)
3 * atan(sqrt(3))
atanh(0.5)
\\ B
base(x^3+4*x+5)
bernreal(12)
bernvec(6)
bezout(123456789,987654321)
bigomega(12345678987654321)
bin(1.1,5)
binary(65537)
bittest(10^100,100)
boundcf(pi,5)
boundfact(40!+1,100000)
\\ C
ceil(-2.5)
centerlift(mod(456,555))
cf(pi)
cf2([1,3,5,7,9],(exp(1)-1)/(exp(1)+1))
changevar(x + y, [z, t])
char([1, 2; 3, 4], z)
char(mod(x^2+x+1,x^3+5*x+1),z)
char1([1, 2; 3, 4], z)
char2(mod(1,8191)*[1, 2; 3, 4], z)
acurve = chell(acurve, [-1, 1, 2, 3])
chinese(mod(7, 15), mod(13, 21))
apoint = chptell(apoint, [-1, 1, 2, 3])
isoncurve(acurve, apoint)
classno(-12391)
classno(1345)
classno2(-12391)
classno2(1345)
coeff(sin(x),7)
compo(1+o(7^4), 3)
compose(qfi(2, 1, 3), qfi(2, 1, 3))
comprealraw(qfr(5,3,-1,0.),qfr(7,1,-1,0.))
concat([1, 2], [3, 4])
conj(1+i)
%_
content([123, 456, 789, 234])
convol(sin(x), x * cos(x))
cos(1)
cosh(1)
cvtoi(1.7)
cyclo(105)
\\ D
denom(12345/54321)
deriv((x + y)^5, y)
((x+y)^5)'
det([1, 2, 3; 1, 5, 6; 9, 8, 7])
det2([1, 2, 3; 1, 5, 6; 9, 8, 7])
detr([1, 2, 3; 1, 5, 6; 9, 8, 7])
dilog(0.5)
disc(x^3+4*x+5)
discf(x^3+4*x+5)
divisors(8!)
divres(345, 123)
divres(x^7 - 1, x^5 + 1)
divsum(8!,x,x)
\\ E
eigen([1, 2, 3; 4, 5, 6; 7, 8, 9])
eint1(2)
erfc(2)
eta(q)
euler
z = y; y = x; eval(z)
exp(1)
extract([1,2,3,4,5,6,7,8,9,10], 1000)
\\ F
10!
fact(10)
lift(lift(factfq(x^3+x^2+x-1,3,t^3+t^2+t-1)))
factmod(x^11+1, 7)
factor(17!+1)
p=x^5+3021*x^4-786303*x^3-6826636057*x^2-546603588746*x+3853890514072057
fa=[11699, 6; 2392997, 2; 4987333019653, 2]
factoredbase(p,fa)
factoreddiscf(p,fa)
\precision=40
factoredpolred(p,fa)
factoredpolred2(p,fa)
\precision=20
lift(factornf(y^3+y^2-2*y-1,x^3+x^2-2*x-1))
factorpadic(apol,7,8)
factpol(x^15-1, 3)
factpol(x^15-1, 0)
factpol2(x^15-1, 0)
fibo(100)
floor(-1/2)
floor(-2.5)
for(x=1,5,print(x!))
fordiv(10,x,print(x))
forprime(p=1,30,print(p))
forstep(x=0,pi,pi/12,print(sin(x)))
frac(-2.7)
\\ G
galois(x^6-3*x^2-1)
galoisconj(x^6+108)
gamh(10)
gamma(10.5)
gauss(hilbert(10),[1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
gcd(12345678, 87654321)
globalred(acurve)
k=4;goto(k%2);label(0);print("even");goto(3);label(1);print("odd");label(3);
\\ H
hclassno(2000003)
hell(acurve, apoint)
hell2(acurve, apoint)
hell3(acurve, apoint)
hermite(1/hilbert(7))
hess(hilbert(7))
hilb(2/3, 3/4, 5)
hilbert(5)
hilbp(mod(5,7),mod(6, 7))
hvector(10,x,1/x)
hyperu(1,1,1)
\\ I
i^2
idmat(5)
if(3 < 2, print("bof"), print("ok"));
imag(2+3*i)
image([1,3,5;2,4,6;3,5,7])
incgam(2,1)
incgam1(2,1)
incgam2(2,1)
incgam3(2,1)
incgam4(4,1,6)
indexrank([1,1,1;1,1,1;1,1,2])
indsort([8, 7, 6, 5])
initalg(x^5-5*x^4+8*x^3-4*x^2-1)
initell([0,0,0,-1,0])
initell2([0,0,0,0,-1])
integ(sin(x), x)
intersect([1,2;3,4;5,6],[2,3;7,8;8,9])
\precision=9
intgen(x=0,pi,sin(x))
sqr(2*intgen(x=0,4,exp(-x^2)))
4*intinf(x=1,10000,1/(1+x^2))
intnum(x = -0.999, 0.999, 1/sqrt(1 - x^2))
2 * intopen(x = 0, 100, sin(x)/x)
\precision=28
inverseimage([1,1;2,3;5,7],[2,2,6]~)
isfund(12345)
isincl(x^2+1,x^4+1)
isisom(x^3+x^2-2*x-1,x^3+x^2-2*x-1)
isprime(12345678901234567)
ispsp(73!+1)
isqrt(10!^2+1)
issqfree(123456789876543219)
issquare(12345678987654321)
\\ J
jacobi(hilbert(6))
jbesselh(1,1)
jell(i)
\\ K
kbessel(1 + i, 1)
kbessel2(1 + i, 1)
x
y
ker(matrix(4,4,x,y,x/y))
keri(matrix(4,4,x,y,x+y))
kerint(matrix(4,4,x,y,x*y))
kerint1(matrix(4,4,x,y,x*y))
kerint2(matrix(4,6,x,y,2520/(x+y)))
kerr(matrix(4,4,x,y,sin(x+y)))
f(u)=u+1;
print(f(5)); kill(f);
f=12
kro(5,7)
kro(3,18)
\\ L
k=4;goto(k%2);label(0);print("even");goto(3);label(1);print("odd");label(3);
laplace(x*exp(x*y)/(exp(x)-1))
lcm(15,-21)
length(divisors(1000))
legendre(10)
lex([1,3],[1,3,5])
lexsort([[1,5],[2,4],[1,5,1],[1,4,2]])
lift(chinese(mod(7,15),mod(4,21)))
lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)])
lindep2([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)],40)
m=1/hilbert(7)
mp=concat(m,idmat(7))
lll(m)
lll1(m)
lllgram(m)
lllgram1(m)
lllgramint(m)
lllgramkerim(mp~*mp)
lllint(m)
lllkerim(mp)
lllrat(m)
\precision=100
ln(2)
lngamma(10^50*i)
\precision=2000
log(2)
logagm(2)
\precision=9
bcurve=initell([0,0,0,-3,0])
localred(bcurve,2)
ccurve=initell([0,0,-1,-1,0])
l=lseriesell(ccurve,2,-37,1)
lseriesell(ccurve,2,-37,1.2)-l
\\ M
mat(concat(vector(4,x,x)~,vector(4,x,10+x)~))
matell(initell([0,0,0,-17,0]),[[-1,4],[-4,2]])
matextract(matrix(15,15,x,y,x+y),vector(5,x,3*x),vector(3,y,3*y))
matinvr(1.*hilbert(7))
matsize([1,2;3,4;5,6])
matrix(5,5,x,y,gcd(x,y))
matrixqz([1,3;3,5;5,7],0)
matrixqz2([1/3,1/4,1/6;1/2,1/4,-1/4;1/3,1,0])
matrixqz3([1,3;3,5;5,7])
max(2,3)
min(2,3)
minim([2,1;1,2])
mod(-12,7)
modp(-12,7)
mod(10873,49649)^-1
modreverse(mod(x^2+1,x^3-x-1))
mu(3*5*7*11*13)
\\ N
newtonpoly(x^4+3*x^3+27*x^2+9*x+81,3)
nextprime(100000000000000000000000)
norm(1+i)
norm(mod(x+5,x^3+x+1))
norml2(vector(10,x,x))
nucomp(qfi(2,1,9),qfi(4,3,5),3)
form=qfi(2,1,9);nucomp(form,form,3)
numdiv(2^99*3^49)
numer((x+1)/(x-1))
nupow(form,111)
\\ O
1/(1+x)+o(x^20)
omega(100!)
ordell(acurve, 1)
order(mod(33,2^16+1))
ordred(x^3-12*x+45*x-1)
\\ P
pascal(8)
permutation(7,1035)
pf(-44,3)
phi(257^2)
pi
plot(x=-5,5,sin(x))
\\ ploth(x=-5,5,sin(x))
\\ ploth2(t=0,2*pi,[sin(5*t),sin(7*t)])
pnqn([2,6,10,14,18,22,26])
pnqn([1,1,1,1,1,1,1,1;1,1,1,1,1,1,1,1])
pointell(acurve,zell(acurve,apoint))
polint([0,2,3],[0,4,9],5)
polred(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
polred2(x^4-28*x^3-458*x^2+9156*x-25321)
polsym(x^17-1,17)
poly(sin(x),x)
polylog(5,0.5)
polylog(-4,t)
polylogd(5,0.5)
polylogdold(5,0.5)
polylogp(5,0.5)
poly([1,2,3,4,5],x)
polyrev([1,2,3,4,5],x)
powell(acurve,10,apoint)
powrealraw(qfr(5,3,-1,0.),3)
pprint((x-12*y)/(y+13*x));
pprint([1,2;3,4])
pprint1(x+y);pprint(x+y);
\precision=100
pi
prec(pi,20)
\precision=20
prime(100)
primes(100)
forprime(p=2,100,print(p, " ", lift(primroot(p))))
print((x-12*y)/(y+13*x));
print([1,2;3,4])
print1(x+y);print1(" egale ");print(x+y);
prod(1,k=1,10,1+1/k!)
prod(1.,k=1,10,1+1/k!)
pi^2/6*prodeuler(p=2,10000,1-p^-2)
prodinf(n=0,(1+2^-n)/(1+2^(-n+1)))
prodinf1(n=0,-2^-n/(1+2^(-n+1)))
psi(1)
\\ Q
quadgen(-11)
quadpoly(-11)
\\ R
smith(matrix(5,5,j,k,random()))
rank(matrix(5,5,x,y,x+y))
print1("give a value for s? ");s=read();print(1/s)
37.
real(5-7*i)
recip(3*x^7-5*x^3+6*x-9)
redcomp(qfi(3,10,12))
redreal(qfr(3,10,-20,1.5))
redrealnod(qfr(3,10,-20,1.5),18)
regula(17)
kill(y);print(x+y);reorder([x, y]); print(x+y);
resultant(x^3-1,x^3+1)
resultant2(x^3-1.,x^3+1.)
reverse(tan(x))
rhoreal(qfr(3,10,-20,1.5))
rhorealnod(qfr(3,10,-20,1.5),18)
rndtoi(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
rootmod(x^16-1,41)
rootpadic(x^4+1,41,6)
roots(x^5-1)
rootslong(x^4-1000000000000000000000)
round(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
rounderror(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
\\ S
q*series(anell(acurve,100),q)
shift(1,50)
shift([3,4,-11,-12],-2)
shiftmul([3,4,-11,-12],-2)
sigma(100)
sigmak(2,100)
sigmak(-3,100)
sign(-1)
sign(0)
sign(0.)
signat(hilbert(5)-0.11*idmat(5))
simplify(((x+i+1)^2-x^2-2*x*(i+1))^2)
sin(pi/6)
sinh(1)
size([1.3*10^5,2*i*pi*exp(4*pi)])
smallbase(x^3+4*x+5)
smalldiscf(x^3+4*x+5)
smallfact(100!+1)
smallinitell([0,0,0,-17,0])
smallpolred(x^4+576)
smallpolred2(x^4+576)
smith(1/hilbert(6))
solve(x=1,4,sin(x))
sort(vector(17,x,5*x%17))
sqr(1+o(2))
sqred(hilbert(5))
sqrt(13+o(127^12))
srgcd(x^10-1,x^15-1)
apol=0.3+legendre(10)
sturm(apol)
sturmpart(apol,0.91,1)
subell(initell([0,0,0,-17,0]),[-1,4],[-4,2])
subst(sin(x),x,y)
subst(sin(x),x,x+x^2)
sum(0,k=1,10,2^-k)
sum(0.,k=1,10,2^-k)
\precision=20
4*sumalt(n=0,(-1)^n/(2*n+1))
suminf(n=1,2^-n)
6/pi^2*sumpos(n=1,n^-2)
supplement([1,3;2,4;3,6])
\\ T
sqr(tan(pi/3))
tanh(1)
taylor(y/(x-y),y)
tchebi(10)
tchirnhausen(x^5-x-1)
teich(7+o(127^12))
texprint((x+y)^3/(x-y)^2)
theta(0.5,3)
thetanullk(0.5,7)
trace(1+i)
trace(mod(x+5,x^3+x+1))
trans(vector(2,x,x))
%*%~
trunc(-2.7)
trunc(sin(x^2))
type(mod(x,x^2+1))
\\ U
unit(17)
n=33;until(n==1,print1(n," ");if(n%2,n=3*n+1,n=n/2));print(1)
\\ V
valuation(6^10000-1,5)
vec(sin(x))
vecsort([[1,8],[2,5],[3,6],[4,1]],2)
\\ W
wf(i)
wf2(i)
m=5; while(m<20, print1(m, " ");m=m+1); print()
\\ Z
zell(acurve, apoint)
zeta(3)
zeta(0.5+14.1347251*i)